Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 490
Filtrar
1.
J Pharm Sci ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561054

RESUMO

Sialic acid (SA) is crucial for protecting glycoproteins from clearance. Efmarodocokin alfa (IL-22Fc), a fusion protein agonist that links IL-22 to the crystallizable fragment (Fc) of human IgG4, contains 8 N-glycosylation sites and exhibits heterogeneous and variable terminal sialylation biodistribution. This presents a unique challenge for Pharmacokinetic (PK) and Pharmacodynamic (PD) analysis and cross-species translation. In this study, we sought to understand how varying SA levels and heterogeneous distribution contribute to IL-22Fc's complex PKPD properties. We initially used homogenous drug material with varying SA levels to examine PKPD in mice. Population PKPD analysis based on mouse data revealed that SA was a critical covariate simultaneously accounting for the substantial between subject variability (BSV) in clearance (CL), distribution clearance (CLd), and volume of distribution (Vd). In addition to the well-established mechanism by which SA inhibits ASGPR activity, we hypothesized a novel mechanism by which decrease in SA increases the drug uptake by endothelial cells. This decrease in SA, leading to more endothelial uptake, was supported by the neonatal Fc receptor (FcRn) dependent cell-based transcytosis assay. The population analysis also suggested in vivo EC50 (IL-22Fc stimulating Reg3ß) was independent on SA, while the in-vitro assay indicated a contradictory finding of SA-in vitro potency relationship. We created a mechanism based mathematical (MBM) PKPD model incorporating the decrease in SA mediated endothelial and hepatic uptake, and successfully characterized the SA influence on IL-22Fc PK, as well as the increased PK exposure being responsible for increased PD. Thereby, the MBM model supported that SA has no direct impact on EC50, aligning with the population PKPD analysis. Subsequently, using the MBM PKPD model, we employed 5 subpopulation simulations to reconstitute the heterogeneity of drug material. The simulation accurately predicted the PKPD of heterogeneously and variably sialylated drug in mouse, monkey and human. The successful prospective validation confirmed the MBM's ability to predict IL-22Fc PK across variable SA levels, homogenous to heterogeneous material, and across species (R2=0.964 for clearance prediction). Our model prediction suggests an average of 1 mol/mol SA increase leads to a 50% increase in drug exposure. This underlines the significance of controlling sialic acid levels during lot-to-lot manufacturing.

2.
Opt Express ; 32(7): 12405-12418, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571063

RESUMO

An innovative ultra-sensitive, dual-functional sensor employing a D-shaped microchannel photonic crystal fiber (PCF) for refractive index (RI) and temperature measurements is proposed and comprehensively investigated. Its high-sensitivity is achieved through the incorporation of gold (Au) and magnesium fluoride (MgF2) as plasmonic materials in the micro-rectangular channel. This configuration significantly enhances the interaction between the surface plasmon polaritons (SPPs) field and y-polarized evanescent field on external surfaces. Additionally, the integration of a temperature-sensitive fluid within the sensor allows for precise detection of temperature changes. Our simulations demonstrate a broad detection spectrum, covering RI values from 1.27 to 1.43 and temperatures ranging from 45°C to 100°C. The sensor achieves peak sensitivities of 31800nm/RIU for RI and 49 nm/°C for temperature. Besides, the sensor only has a cladding consisting of three air holes to enhance coupling and reduce the difficulty of preparation. Importantly, the sensor's performance remains robust against minor structural alterations in the PCF, indicating high fault tolerance. Given its high sensitivity, extensive detection range, and strong fabrication stability, this PCF-SPR sensor offers significant potential for applications in biochemical sensing and environmental monitoring.

3.
J Clin Med ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592058

RESUMO

Background: Major depressive disorder (MDD) is a leading cause of disability worldwide. At present, however, there are no established biomarkers that have been validated for diagnosing and treating MDD. This study sought to assess the diagnostic and predictive potential of the differences in serum amino acid concentration levels between MDD patients and healthy controls (HCs), integrating them into interpretable machine learning models. Methods: In total, 70 MDD patients and 70 HCs matched in age, gender, and ethnicity were recruited for the study. Serum amino acid profiling was conducted by means of chromatography-mass spectrometry. A total of 21 metabolites were analysed, with 17 from a preset amino acid panel and the remaining 4 from a preset kynurenine panel. Logistic regression was applied to differentiate MDD patients from HCs. Results: The best-performing model utilised both feature selection and hyperparameter optimisation and yielded a moderate area under the receiver operating curve (AUC) classification value of 0.76 on the testing data. The top five metabolites identified as potential biomarkers for MDD were 3-hydroxy-kynurenine, valine, kynurenine, glutamic acid, and xanthurenic acid. Conclusions: Our study highlights the potential of using an interpretable machine learning analysis model based on amino acids to aid and increase the diagnostic accuracy of MDD in clinical practice.

4.
Front Endocrinol (Lausanne) ; 15: 1344971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501098

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence and affects approximately one-third of adults, owing to high-fat dietary habits and a sedentary lifestyle. The role of hypoxia-inducible factor 2α (HIF-2α) in NAFLD progression remains unknown. This study aimed to investigate the effects of chronic hypoxia on NAFLD progression by examining the role of hypoxia-inducible factor 2α (HIF-2α) activation and that of hepatic stellate cell (HSC)-derived myofibroblasts through glutaminolysis. We hypothesised that hypoxia exacerbates NAFLD by promoting HIF-2α upregulation and inhibiting phosphorylated yes-associated protein (YAP), and that increasing YAP expression enhances HSC-derived myofibroblasts. We studied patients with NAFLD living at high altitudes, as well as animal models and cultured cells. The results revealed significant increases in HSC-derived myofibroblasts and collagen accumulation caused by HIF-2α and YAP upregulation, both in patients and in a mouse model for hypoxia and NAFLD. HIF-2α and HIF-2α-dependent YAP downregulation reduced HSC activation and myofibroblast levels in persistent chronic hypoxia. Furthermore, hypoxia-induced HIF-2α upregulation promoted YAP and inhibited YAP phosphorylation, leading to glutaminase 1 (GLS1), SLC38A1, α-SMA, and Collagen-1 overexpression. Additionally, hypoxia restored mitochondrial adenosine triphosphate production and reactive oxygen species (ROS) overproduction. Thus, chronic hypoxia-induced HIF-2α activation enhances fibrosis and NAFLD progression by restoring mitochondrial ROS production and glutaminase-1-induced glutaminolysis, which is mediated through the inhibition of YAP phosphorylation and increased YAP nuclear translocation. In summary, HIF-2α plays a pivotal role in NAFLD progression during chronic hypoxia.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adulto , Animais , Humanos , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Colágeno Tipo I/metabolismo , Glutaminase/metabolismo , Glutamina/metabolismo , Células Estreladas do Fígado/metabolismo , Hipóxia/metabolismo , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Sinalização YAP
5.
Sci Total Environ ; 926: 171939, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527543

RESUMO

Source localization is significant for mitigating indoor air pollution and safeguarding the well-being and safety of occupants. While most study focuses on mechanical ventilation and static sources, this study explores the less-explored domain of locating time-varying sources in naturally ventilated spaces. We have developed an innovative 3D localization system that adjusts to varying heights, significantly enhancing capabilities beyond traditional fixed-height 2D systems. To ensure consistency in experimental conditions, we conducted comparative analyses of 2D and 3D methods, using a swinging fan to simulate natural ventilation. Our findings reveal a substantial disparity in performance: the 2D method had a success rate below 46.7% in cases of height mismatches, while our 3D methods consistently achieved success rates above 66.7%, demonstrating their superior effectiveness in complex environments. Furthermore, we validated the 3D strategies in real naturally ventilated settings, confirming their wider applicability. This research extends the scope of indoor source localization and offers valuable insights and strategies for more effective pollution control.


Assuntos
Poluição do Ar em Ambientes Fechados , Robótica , Olfato , Ventilação/métodos , Poluição do Ar em Ambientes Fechados/análise
6.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466117

RESUMO

Speech disorders are associated with different degrees of functional and structural abnormalities. However, the abnormalities associated with specific disorders, and the common abnormalities shown by all disorders, remain unclear. Herein, a meta-analysis was conducted to integrate the results of 70 studies that compared 1843 speech disorder patients (dysarthria, dysphonia, stuttering, and aphasia) to 1950 healthy controls in terms of brain activity, functional connectivity, gray matter, and white matter fractional anisotropy. The analysis revealed that compared to controls, the dysarthria group showed higher activity in the left superior temporal gyrus and lower activity in the left postcentral gyrus. The dysphonia group had higher activity in the right precentral and postcentral gyrus. The stuttering group had higher activity in the right inferior frontal gyrus and lower activity in the left inferior frontal gyrus. The aphasia group showed lower activity in the bilateral anterior cingulate gyrus and left superior frontal gyrus. Across the four disorders, there were concurrent lower activity, gray matter, and fractional anisotropy in motor and auditory cortices, and stronger connectivity between the default mode network and frontoparietal network. These findings enhance our understanding of the neural basis of speech disorders, potentially aiding clinical diagnosis and intervention.


Assuntos
Afasia , Córtex Auditivo , Disfonia , Gagueira , Humanos , Disartria , Funções Verossimilhança , Distúrbios da Fala
7.
PLoS One ; 19(3): e0286087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437206

RESUMO

The fundamental technology behind bitcoin, known as blockchain, has been studied and used in a variety of industries especially in finance. The security of blockchain is extremely important as it will affects the assets of the clients as well as it is the lifeline feature of the entire system that needs to be guaranteed. Currently, there is a lack of a methodical approach to guarantee the security and dependability of the private key during its whole life. Furthermore, there is no quick, easy, or secure way to create the encryption key. A biometric-based private key encryption and management framework (BPKEM) for blockchain is proposed not only to solve the private key lifecycle manag- ement problem, but also it maintains compatibility with existing blockchain systems. For the problem of private key encryption, a biometric-based stable key generation method is proposed. By using the relative invariance between facial and fingerprint feature points, this measure can convert feature points into stable and distinguishable descriptors, then using a reusable fuzzy extractor to create a stable key. The correct- ness and efficiency of the newly proposed biometric-based blockchain encryption tech- nique in this paper has been validated in the experiments.


Assuntos
Blockchain , Humanos , Biometria , Face , Indústrias , Manutenção
8.
Ann Hematol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448788

RESUMO

Waldenström macroglobulinemia (WM) is a type of B-cell lymphoma that produces IgM. Our study aimed to investigate the role of CXCL13, a chemokine essential for B lymphocytes, in the evaluation of treatment response and prognosis in WM. We collected serum samples and clinical data from 72 WM patients, with 69 patients receiving systemic therapy and 3 patients opting not to receive treatment. Serum CXCL13 levels at baseline and after six months of treatments were measured by enzyme-linked immunosorbent assay. The median serum level of CXCL13 was 1 539.2 pg/ml (range 10.0-21 389.9) at baseline and significantly decreased to 123.1 pg/ml (range 0.0-6 741.5) after 6 months of treatments. At baseline, higher CXCL13 levels were associated with lower hemoglobin levels (p = 0.001), higher ß2-microglobulin levels (p = 0.001), lower albumin levels (p = 0.046), and higher IPSS-WM scores (p = 0.013). After 6 months of treatment, patients who achieved PR/VGPR had significantly lower CXCL13 levels compared to those with SD (70.2 pg/ml vs 798.6 pg/ml, p = 0.002). The median follow-up period was 40 months (range 4.2-188). Eight patients died during the follow-up period. Overall survival differed based on CXCL13 levels. When grouped by baseline CXCL13 levels, the median OS was 60.0 months in patients with serum CXCL13 > 2 000 pg/ml, while it was not reached in patients with low CXCL13 levels (p < 0.001). Based on CXCL13 levels after the treatments, the median OS was 74.0 months in patients with serum CXCL13 > 200 pg/ml, while it was not reached in patients with CXCL13 ≤ 200 pg/ml. In a subgroup of 28 patients with a series of serum samples, the increase of serum CXCL13 level was associated with disease progression or the start of next-line therapy (p < 0.001). Our study concludes that serum CXCL13 levels decrease in WM patients treated with various regimens and correlate with treatment response. Detecting serum CXCL13 at baseline or after treatment help in predicting prognosis.

10.
Sci Signal ; 17(825): eadh1178, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412254

RESUMO

Pyroptosis, an inflammatory form of programmed cell death, is linked to the pathology of rheumatoid arthritis (RA). Here, we investigated the molecular mechanism underlying pyroptosis in T cells isolated from patients with RA. Compared with healthy individuals, patients with RA had more pyroptotic CD4+ T cells in blood and synovia, which correlated with clinical measures of disease activity. Moreover, the mRNA expression and protein abundance of arachidonate 5-lipoxygenase (ALOX5), which converts arachidonic acid to leukotriene A4 (LTA4), were increased in CD4+ T cells from patients with RA and, among patients with RA, were lowest in those in clinical remission. Knockdown or pharmacological inhibition of ALOX5 suppressed CD4+ T cell pyroptosis and improved symptoms in two rodent models of RA. Mechanistically, the increase in ALOX5 activity in RA CD4+ T cells enhanced the production of the LTA4 derivative LTB4, which stimulated Ca2+ influx through ORAI3 channels, leading to the activation of NLRP3 inflammasomes and pyroptosis. Our findings reveal a role for ALOX5 in RA and provide a molecular basis for further exploring the clinical utility of ALOX5 inhibition in RA and for using ALOX5 as a biomarker to distinguish active disease and remission in RA.


Assuntos
Artrite Reumatoide , Linfócitos T , Humanos , Linfócitos T/metabolismo , Piroptose , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Inflamação/metabolismo , Linfócitos T CD4-Positivos/metabolismo
11.
Front Immunol ; 15: 1365975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404589

RESUMO

Germline mutations in genes involved in perforin-granzyme-mediated cytotoxicity such as PRF1, UNC13D, STX11, and STXBP2 were known to cause familial hemophagocytic lymphohistiocytosis (FHL). In this study, we reported a unique group of 3 patients with germline mutations of UNC13D and STX11 genes and presented as adult-onset peripheral T-cell lymphoma (PTCL) with cytotoxic T-cell phenotype and atypical lymphoma presentations. CD107a degranulation assay and NK-cell activity analysis demonstrated impaired cytotoxic function of the NK/T-cells of the patients with FHL-related mutations. Gene expression profile study revealed that up-regulated genes of the cytotoxic T-cells were enriched in autoimmune-related pathways. It was possible that impaired cytotoxic lymphocyte-mediated immune surveillance and autoantigen stimulation may both participate in PTCL oncogenesis. Germline defects of FLH-related genes may represent a novel predisposing factor for PTCLs.


Assuntos
Linfo-Histiocitose Hemofagocítica , Linfoma de Células T Periférico , Adulto , Humanos , Proteínas Citotóxicas Formadoras de Poros/genética , Células Matadoras Naturais , Células Germinativas/metabolismo , Proteínas de Membrana
12.
Leukemia ; 38(4): 803-809, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38388646

RESUMO

Langerhans cell histiocytosis (LCH) lacks a standardized first-line therapy. This single-center, phase 2 prospective study (NCT04121819) enrolled 61 newly diagnosed adult LCH patients with multisystem or multifocal single system disease from October 2019 to June 2022. Subcutaneous cytarabine (100 mg/m2 for 5 days) was administered in 35-day cycles for 12 total cycles. The primary endpoint was event-free survival (EFS). The median age was 33 years (range 18-66). Twelve patients (19.7%) had liver involvement, of which 2 also had spleen involvement. Among 43 patients undergoing next-generation sequencing, BRAF alterations (44.2%) were most frequent, followed by TP53 (16.3%), MAP2K1 (14.0%) and IDH2 (11.6%). MAPK pathway alterations occurred in 28 patients (65.1%). The overall response rate was 93.4%, with 20 (32.7%) achieving complete response and 37 (60.7%) partial response. After a median 30 months follow-up, 21 (34.4%) relapsed without deaths. Estimated 3-year OS and EFS were 100.0% and 58.5%, respectively. Multivariate analysis identified ≥3 involved organs (P = 0.007; HR 3.937, 95% CI: 1.456-9.804) and baseline lung involvement (P = 0.028; HR 2.976, 95% CI: 1.126-7.874) as poor prognostic factors for EFS. The most common grade 3-4 toxicities were neutropenia (27.9%), thrombocytopenia (1.6%), and nausea (1.6%). In conclusion, cytarabine monotherapy is an effective and safe regimen for newly diagnosed adults, while baseline lung or ≥3 involved organs confers poor prognosis.


Assuntos
Citarabina , Histiocitose de Células de Langerhans , Adulto , Humanos , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Histiocitose de Células de Langerhans/tratamento farmacológico , Histiocitose de Células de Langerhans/diagnóstico , Intervalo Livre de Doença , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
13.
Bioresour Technol ; 397: 130504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423484

RESUMO

While wet waste hydrothermal liquefaction technology has a high biofuel yield, a significant amount of the carbon and nitrogen in the feedstock reports to the aqueous-phase product. Pretreatment of this stream before sending to a conventional wastewater plant is essential or at the very least, advisable. In this work, techno-economic and life-cycle assessments were conducted for the state-of-technology baseline and four aqueous-phase product treatment and monetization options based on experimental data. These options can cut minimum fuel selling prices by up to 13 % and life-cycle greenhouse gas emissions by up to 39 % compared to the baseline. These findings highlight the substantial influence of aqueous produce treatment strategies on the entire wet waste hydrothermal liquefaction process, demonstrating the potential for optimizing economic viability and environmental impact through further research and development of milder treatment methods and diversified by-product valorization pathways.


Assuntos
Meio Ambiente , Gases de Efeito Estufa , Águas Residuárias , Nitrogênio , Biocombustíveis , Biomassa
14.
Analyst ; 149(4): 1221-1228, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38221877

RESUMO

Cancer-targeted nanotechnology has a new trend in the design and preparation of new materials with functions for imaging and therapeutic applications simultaneously. As a new type of carbon nanomaterial, the inherent core-shell structured carbon dots (CDs) can be designed to provide a modular nanoplatform for integration of bioimaging and therapeutic capabilities. Here, core-shell structured CDs are designed and synthesized from levofloxacin and arginine and named Arg-CDs, in which levofloxacin-derived chromophores with up-conversion fluorescence are densely packed into the carbon core while guanidine groups are located on the shell, providing nitric oxide (NO) for photodynamic therapy of tumors. Moreover, the chromophores in the carbon core irradiated by visible LED light generate large amounts of reactive oxygen species (ROSs) that will oxidize the guanidine groups located on the shell of the Arg-CDs and further increase the NO releasing capacity remarkably. The as-synthesized Arg-CDs show excellent biocompatibility, bright up-conversion fluorescence, and a light-controlled ROS & NO releasing ability, which can be a potential light-modulated nanoplatform to integrate bioimaging and therapeutic functionalities.


Assuntos
Neoplasias , Pontos Quânticos , Humanos , Óxido Nítrico , Carbono , Fluorescência , Levofloxacino , Neoplasias/patologia , Espécies Reativas de Oxigênio , Guanidinas/uso terapêutico , Pontos Quânticos/toxicidade
15.
Brief Funct Genomics ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38197537

RESUMO

Identification of individual-level differentially expressed genes (DEGs) is a pre-step for the analysis of disease-specific biological mechanisms and precision medicine. Previous algorithms cannot balance accuracy and sufficient statistical power. Herein, RankCompV2, designed for identifying population-level DEGs based on relative expression orderings, was adjusted to identify individual-level DEGs. Furthermore, an optimized version of individual-level RankCompV2, named as RankCompV2.1, was designed based on the assumption that the rank positions of genes and relative rank differences of gene pairs would influence the identification of individual-level DEGs. In comparison to other individualized analysis algorithms, RankCompV2.1 performed better on statistical power, computational efficiency, and acquired coequal accuracy in both simulation and real paired cancer-normal data from ten cancer types. Besides, single sample GSEA and Gene Set Variation Analysis analysis showed that pathways enriched with up-regulated and down-regulated genes presented higher and lower enrichment scores, respectively. Furthermore, we identified 16 genes that were universally deregulated in 966 triple-negative breast cancer (TNBC) samples and interacted with Food and Drug Administration (FDA)-approved drugs or antineoplastic agents, indicating notable therapeutic targets for TNBC. In addition, we also identified genes with highly variable deregulation status and used these genes to cluster TNBC samples into three subgroups with different prognoses. The subgroup with the poorest outcome was characterized by down-regulated immune-regulated pathways, signal transduction pathways, and apoptosis-related pathways. Protein-protein interaction network analysis revealed that OAS family genes may be promising drug targets to activate tumor immunity in this subgroup. In conclusion, RankCompV2.1 is capable of identifying individual-level DEGs with high accuracy and statistical power, analyzing mechanisms of carcinogenesis and exploring therapeutic strategy.

16.
Arthritis Res Ther ; 26(1): 36, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273310

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) is a chronic, progressive autoimmune disease with a complex pathogenesis that has not yet been fully elucidated, and T-cell pyroptosis is an important pathogenetic factor in RA. This study aimed to investigate the role of endoplasmic reticulum aminopeptidase 2 (ERAP2) in the pyroptosis of CD4+ T cells in RA and the specific molecular mechanism. METHODS: Peripheral venous blood was collected from human subjects, and CD4+ T cells were isolated and activated to measure the level of pyroptosis and ERAP2 expression. Pyroptosis levels were assessed using immunofluorescence, flow cytometry, qRT-PCR, and Western blotting. Changes in pyroptosis levels were observed upon knockdown or overexpression of ERAP2. To detect activated Caspase-1 in tissues, chimeric mice were engrafted with human synovial tissue and reconstituted with human CD4+ T cells. CD4 + T cells were treated with GLI1 antagonists and SMO receptor agonists to detect changes in pyroptosis levels. RESULTS: CD4+ T cell levels undergoing pyroptosis were found to be elevated in the blood and synovium of RA patients. The gene and protein expression of ERAP2 were significantly higher in CD4+ T cells from RA patients. Deletion of ERAP2 suppressed pyroptosis of these cells, attenuated the activation of Caspase-1 in tissue T cells, and reduced tissue inflammatory responses. Reciprocally, overexpression of ERAP2 triggered inflammasome assembly, activated Caspase-1, and induced pyroptosis in CD4+ T cells. Mechanistically, ERAP2 inhibits the Hedgehog signaling pathway and upregulates the expression of nucleotide-binding oligomerization segment-like receptor family 3(NLRP3), cleaved Caspase-1, and Gasdermin D to promote pyroptosis in CD4+ T cells. CONCLUSIONS: Taken together, our results identify a novel mechanism by which ERAP2 regulates RA development and document the effect of the ERAP2/Hedgehog signaling axis on pyroptosis of CD4+ T cells from RA patients.


Assuntos
Artrite Reumatoide , Piroptose , Humanos , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Artrite Reumatoide/metabolismo , Linfócitos T CD4-Positivos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Caspase 1/metabolismo , Aminopeptidases/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia
17.
Adv Sci (Weinh) ; 11(2): e2306230, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37953442

RESUMO

Combined chemotherapy and targeted therapy holds immense potential in the management of advanced gastric cancer (GC). GC tissues exhibit an elevated expression level of protein kinase B (AKT), which contributes to disease progression and poor chemotherapeutic responsiveness. Inhibition of AKT expression through an AKT inhibitor, capivasertib (CAP), to enhance cytotoxicity of paclitaxel (PTX) toward GC cells is demonstrated in this study. A cathepsin B-responsive polymeric nanoparticle prodrug system is employed for co-delivery of PTX and CAP, resulting in a polymeric nano-drug BPGP@CAP. The release of PTX and CAP is triggered in an environment with overexpressed cathepsin B upon lysosomal uptake of BPGP@CAP. A synergistic therapeutic effect of PTX and CAP on killing GC cells is confirmed by in vitro and in vivo experiments. Mechanistic investigations suggested that CAP may inhibit AKT expression, leading to suppression of the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Encouragingly, CAP can synergize with PTX to exert potent antitumor effects against GC after they are co-delivered via a polymeric drug delivery system, and this delivery system helped reduce their toxic side effects, which provides an effective therapeutic strategy for treating GC.


Assuntos
Paclitaxel , Neoplasias Gástricas , Humanos , Inibidores da Angiogênese , Catepsina B , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases , Polímeros , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas/tratamento farmacológico
18.
Biochem Biophys Res Commun ; 690: 149311, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016246

RESUMO

Carbon dots (CDs) are an emerging class of fluorescent quantum dot nanomaterials that have attracted considerable scientific attention for biomedical or bioimaging applications due to their physicochemical and biochemical properties. With the emergence of massive novel synthetic CDs applying to biomedical fields of science, evaluating their biosafety before any biological application is essential. However, there is no universal protocol or routine procedures for toxicity detection and biosafety assessment of CDs in general biological environments. Herein, we provide an ideal and fast operating system to detect the biotoxicity of CDs, which has been preliminary practiced. Briefly, the obtained CDs will be evaluated by in vitro cytotoxicity assay using cell counting kit-8, lactate dehydrogenase assay kit, and flow cytometry. Meanwhile, the model creature zebrafish is employed to perform in vivo evaluation by measuring body length, hatching rate, heart rate, and morphological observation. Our operating procedure condenses previous scattered biosafety detection methods into a rapid standard evaluation protocol that can be applied to early biotoxicity screening of CDs. This protocol will accelerate CDs biological exploitation and guide future industrialized biosafety assessment in large-scale applications.


Assuntos
Nanoestruturas , Pontos Quânticos , Animais , Carbono/toxicidade , Carbono/química , Peixe-Zebra , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Corantes Fluorescentes/química
19.
Sci Total Environ ; 912: 169472, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38142999

RESUMO

This study aims to explore the factors that influence the emission characteristics of multiple pollutants from non-road mobile machinery (NRMM) under real-world conditions and to establish a data-driven method for calculating accurate emission factors. This research focused on NRMM excavators meeting the third-stage emission standards and identified the actual work characteristics of 108 excavators in different scenarios based on a self-developed testing system for 368,000 h. Additionally, a portable emission testing system (PEMS) was used to study the instantaneous emission characteristics under different driving styles and modes for 10 EC210 excavators with the largest engineering construction inventory. The results showed that the average time proportions of idling, working, and moving modes for excavators were 21 %, 66 %, and 13 %, respectively. The results also revealed that the instantaneous emission rates of multiple pollutants varied significantly under different driving styles and modes. Driving style affected the hydraulic pump power change rate through hydraulic pilot pressure, and engine load surge caused turbocharger response delay and in-cylinder combustion deterioration, which affected pollutant emissions. Driving mode affected the emission characteristics of idling, high-speed idling, moving, and working modes of excavators through the external characteristics corresponding to the engine speed gear set. The data-driven method for calculating emission factors differed from the traditional method for most indicators to varying degrees. In terms of fuel-based emission factors (EFfs), except for the EFfNOx indicator, which was 7.859 % higher than the traditional method, the other three indicators were significantly lower than the traditional method. In terms of power-based emission factors (EFps), except for EFpPM and EFpPN, the other two indicators were much higher than the traditional method. EFpCO and EFpNOx were 7.93 % and 20.332 % higher than the traditional method, respectively. It is recommended to use the data-driven method based on the actual driving data distribution to provide scientific support for accurately establishing the emission inventory.

20.
Neurosci Lett ; 818: 137558, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007086

RESUMO

Previous studies have primarily focused on the relationship between native language (L1) and second language (L2) in the brain, specifically in one language modality, such as written or spoken language. However, there is limited research on how L2 proficiency impacts both modalities. This study aimed to investigate the functional networks involved in reading and speech comprehension for both L1 and L2, and observe changes in these networks as L2 proficiency improves. The dataset used in this study was obtained from a previous research conducted by Gurunandan et al., which involved Spanish-English bilingual participants undergoing a three-month English training program. Participants underwent fMRI scanning and performed a semantic animacy judgment task in both spoken and written language before and after training. Through analysis, distinct neural networks associated with spoken and written language were found between individuals' L1 and L2, both before and after training. Moreover, as L2 proficiency improved, the spoken and written networks for L2 remained distinct from those of the L1. These findings suggest that short-term L2 learning experiences can modify neural networks, but may not be enough to achieve native-like proficiency, supporting the accommodation hypothesis. These results have important implications for language learning and education, indicating that additional short-term training and exposure alone may not bridge the gap between L1 and L2 processing networks.


Assuntos
Multilinguismo , Web Semântica , Humanos , Aprendizagem , Idioma , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...